Non-commutative Bloch Theory

نویسنده

  • Michael J. Gruber
چکیده

For differential operators which are invariant under the action of an abelian group Bloch theory is the preferred tool to analyze spectral properties. By shedding some new non-commutative light on this we motivate the introduction of a non-commutative Bloch theory for elliptic operators on Hilbert C-modules. It relates properties of C-algebras to spectral properties of module operators such as band structure, weak genericity of cantor spectra, and absence of discrete spectrum. It applies e.g. to differential operators invariant under a projective group action, such as Schrödinger, Dirac and Pauli operators with periodic magnetic field, as well as to discrete models, such as the almost Matthieu equation and the quantum pendulum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 9 90 10 11 v 2 2 9 Ju n 19 99 NON - COMMUTATIVE BLOCH THEORY : AN OVERVIEW

For differential operators which are invariant under the action of an abelian group Bloch theory is the tool of choice to analyze spectral properties. By shedding some new non-commutative light on this we motivate the introduction of a noncommutative Bloch theory for elliptic operators on Hilbert C-modules. It relates properties of C-algebras to spectral properties of module operators such as b...

متن کامل

ar X iv : m at h - ph / 9 90 10 11 v 1 1 9 Ja n 19 99 NON - COMMUTATIVE BLOCH THEORY

For differential operators which are invariant under the action of an abelian group Bloch theory is the tool of choice to analyze spectral properties. By shedding some new non-commutative light on this we motivate the introduction of a noncommutative Bloch theory for elliptic operators on Hilbert C-modules. It relates properties of C-algebras to spectral properties of module operators such as b...

متن کامل

Se p 20 06 Non - commutative mechanics in mathematical & in condensed matter physics ∗

Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics. Souriau's construction applied to the two-parameter central extension of the planar Galilei group lead to the " exotic " particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical mod...

متن کامل

Exotic Galilean Symmetry and Non-Commutative Mechanics

Some aspects of the “exotic” particle, associated with the two-parameter central extension of the planar Galilei group are reviewed. A fundamental property is that it has non-commuting position coordinates. Other and generalized non-commutative models are also discussed. Minimal as well as anomalous coupling to an external electromagnetic field is presented. Supersymmetric extension is also con...

متن کامل

نظریه میدان ناجابه‌جایی و پارامترهای نقض لورنتس در QED

Non-commutative field theory as a theory including the Lorentz violation can be constructed in two different ways. In the first method, the non-commutative fields are the same as the ordinary ones while the gauge group is restricted to U(n). For example, the symmetry group of standard model in non-commutative space is U(3)×(2)×U(1) which can be reduced to SU(3)×SU(2)×U(1) by two appropriate spo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008